67 research outputs found

    The impact of the demographic transition on dengue in Thailand: Insights from a statistical analysis and mathematical modeling

    Get PDF
    Background: An increase in the average age of dengue hemorrhagic fever (DHF) cases has been reported in Thailand. The cause of this increase is not known. Possible explanations include a reduction in transmission due to declining mosquito populations, declining contact between human and mosquito, and changes in reporting. We propose that a demographic shift toward lower birth and death rates has reduced dengue transmission and lengthened the interval between large epidemics. Methods and Findings: Using data from each of the 72 provinces of Thailand, we looked for associations between force of infection (a measure of hazard, defined as the rate per capita at which susceptible individuals become infected) and demographic and climactic variables. We estimated the force of infection from the age distribution of cases from 1985 to 2005. We find that the force of infection has declined by 2% each year since a peak in the late 1970s and early 1980s. Contrary to recent findings suggesting that the incidence of DHF has increased in Thailand, we find a small but statistically significant decline in DHF incidence since 1985 in a majority of provinces. The strongest predictor of the change in force of infection and the mean force of infection is the median age of the population. Using mathematical simulations of dengue transmission we show that a reduced birth rate and a shift in the population's age structure can explain the shift in the age distribution of cases, reduction of the force of infection, and increase in the periodicity of multiannual oscillations of DHF incidence in the absence of other changes. Conclusions: Lower birth and death rates decrease the flow of susceptible individuals into the population and increase the longevity of immune individuals. The increase in the proportion of the population that is immune increases the likelihood that an infectious mosquito will feed on an immune individual, reducing the force of infection. Though the force of infection has decreased by half, we find that the critical vaccination fraction has not changed significantly, declining from an average of 85% to 80%. Clinical guidelines should consider the impact of continued increases in the age of dengue cases in Thailand. Countries in the region lagging behind Thailand in the demographic transition may experience the same increase as their population ages. The impact of demographic changes on the force of infection has been hypothesized for other diseases, but, to our knowledge, this is the first observation of this phenomenon

    Impacts of El Niño Southern Oscillation and Indian Ocean Dipole on dengue incidence in Bangladesh

    Get PDF
    Dengue dynamics are driven by complex interactions between hosts, vectors and viruses that are influenced by environmental and climatic factors. Several studies examined the role of El Niño Southern Oscillation (ENSO) in dengue incidence. However, the role of Indian Ocean Dipole (IOD), a coupled ocean atmosphere phenomenon in the Indian Ocean, which controls the summer monsoon rainfall in the Indian region, remains unexplored. Here, we examined the effects of ENSO and IOD on dengue incidence in Bangladesh. According to the wavelet coherence analysis, there was a very weak association between ENSO, IOD and dengue incidence, but a highly significant coherence between dengue incidence and local climate variables (temperature and rainfall). However, a distributed lag nonlinear model (DLNM) revealed that the association between dengue incidence and ENSO or IOD were comparatively stronger after adjustment for local climate variables, seasonality and trend. The estimated effects were nonlinear for both ENSO and IOD with higher relative risks at higher ENSO and IOD. The weak association between ENSO, IOD and dengue incidence might be driven by the stronger effects of local climate variables such as temperature and rainfall. Further research is required to disentangle these effects

    Quantifying the Emergence of Dengue in Hanoi, Vietnam: 1998–2009

    Get PDF
    Dengue is the most common vector-borne viral disease of humans, causing an estimated 50 million cases per year. The number of countries affected by dengue has increased dramatically in the last 50 years and dengue is now a major public health problem in large parts of the tropical and subtropical world. It is of considerable importance to understand the factors that determine how dengue becomes newly established in areas where the risk of dengue was previously small. Hanoi in North Vietnam is a large city where dengue appears to be emerging. We analyzed 12 years of dengue surveillance data in order to characterize the temporal and spatial epidemiology of dengue in Hanoi and to establish if dengue incidence has been increasing. After excluding the two major outbreak years of 1998 and 2009 and correcting for changes in population age structure over time, we found there was a significant annual increase in the incidence of notified dengue cases over the period 1999–2008. Dengue cases were concentrated in young adults in the highly urban central areas of Hanoi. This study indicates that dengue transmission is increasing in Hanoi and provides a platform for further studies of the underlying drivers of this emergence

    A Comparative Study of Leptospirosis and Dengue in Thai Children

    Get PDF
    Two of the most common causes of acute febrile illnesses among children in the tropics are leptospirosis and dengue. Early in illness, these two conditions are often indistinguishable and rapid laboratory confirmation of the infecting pathogen is generally not available. An enhanced ability to distinguish leptospirosis from dengue in children would guide clinicians and public health personnel in the appropriate use of limited healthcare resources

    Dengue in Thailand and Cambodia: An Assessment of the Degree of Underrecognized Disease Burden Based on Reported Cases

    Get PDF
    Dengue is a major public health problem especially in tropical and subtropical countries of Asia and Latin-America. An effective dengue vaccine is not yet available, but several vaccine candidates are currently being evaluated in clinical trials. Accurate country-level incidence data are crucial to assess the cost-effectiveness of such vaccines and will assist policy-makers in making vaccine introduction decisions. Existing national surveillance systems are often passive and are designed to monitor trends and to detect disease outbreaks. Our analyses of data from prospectively followed cohorts with laboratory confirmation of dengue cases show that, in Thailand and Cambodia, dengue incidence is underrecognized by more than 8-fold. The magnitude of the outpatient burden caused by dengue is not assessed or reflected by the national surveillance data. We estimate that a median of more than 340,000 symptomatic dengue virus infections occurred annually in children less than 15 years of age in Thailand in Cambodia between 2003 and 2007

    Correlation of Serotype-Specific Dengue Virus Infection with Clinical Manifestations

    Get PDF
    Dengue virus (DENV) causes disease in millions of people annually and disproportionately affects those in the developing world. DENVs may be divided into four serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) and a geographical region may be affected by one or more DENV serotypes simultaneously. Infection with DENV may cause life-threatening disease such as dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS), but more often causes less severe manifestations affecting a wide range of organs. Although many previous reports have explored the role of the different DENV serotypes in the development of severe manifestations, little attention has focused on the relative role of each DENV serotype in the development of cutaneous, respiratory, gastrointestinal, musculoskeletal, and neurological manifestations. We recruited a large group of participants from four countries in South America to compare the prevalence of more than 30 manifestations among the four different DENV serotypes. We found that certain DENV serotypes were often associated with a higher prevalence of a certain manifestation (e.g., DENV-3 and diarrhea) or manifestation group (e.g., DENV-4 and cutaneous manifestations)

    Targeting vaccinations for the licensed dengue vaccine: considerations for serosurvey design

    Get PDF
    Background The CYD-TDV vaccine was unusual in that the recommended target population for vaccination was originally defined not only by age, but also by transmission setting as defined by seroprevalence. WHO originally recommended countries consider vaccination against dengue with CYD-TDV vaccine in geographic settings only where prior infection with any dengue serotype, as measured by seroprevalence, was >170% in the target age group. Vaccine was not recommended in settings where seroprevalence was <50%. Test-and-vaccinate strategies suggested following new analysis by Sanofi will still require age-stratified seroprevalence surveys to optimise age-group targeting. Here we address considerations for serosurvey design in the context of vaccination program planning. Methods To explore how the design of seroprevalence surveys affects estimates of transmission intensity, 100 age-specific seroprevalence surveys were simulated using a beta-binomial distribution and a simple catalytic model for different combinations of age-range, survey size, transmission setting, and test sensitivity/specificity. We then used a Metropolis-Hastings Markov Chain Monte-Carlo algorithm to estimate the force of infection from each simulated dataset. Results Sampling from a wide age-range led to more accurate estimates than merely increasing sample size in a narrow age-range. This finding was consistent across all transmission settings. The optimum test sensitivity and specificity given an imperfect test differed by setting with high sensitivity being important in high transmission settings and high specificity important in low transmission settings. Conclusions When assessing vaccination suitability by seroprevalence surveys, countries should ensure an appropriate age-range is sampled, considering epidemiological evidence about the local burden of disease

    Estimating Dengue Transmission Intensity from Sero-Prevalence Surveys in Multiple Countries

    Get PDF
    BACKGROUND:Estimates of dengue transmission intensity remain ambiguous. Since the majority of infections are asymptomatic, surveillance systems substantially underestimate true rates of infection. With advances in the development of novel control measures, obtaining robust estimates of average dengue transmission intensity is key for assessing both the burden of disease from dengue and the likely impact of interventions. METHODOLOGY/PRINCIPAL FINDINGS:The force of infection (λ) and corresponding basic reproduction numbers (R0) for dengue were estimated from non-serotype (IgG) and serotype-specific (PRNT) age-stratified seroprevalence surveys identified from the literature. The majority of R0 estimates ranged from 1-4. Assuming that two heterologous infections result in complete immunity produced up to two-fold higher estimates of R0 than when tertiary and quaternary infections were included. λ estimated from IgG data were comparable to the sum of serotype-specific forces of infection derived from PRNT data, particularly when inter-serotype interactions were allowed for. CONCLUSIONS/SIGNIFICANCE:Our analysis highlights the highly heterogeneous nature of dengue transmission. How underlying assumptions about serotype interactions and immunity affect the relationship between the force of infection and R0 will have implications for control planning. While PRNT data provides the maximum information, our study shows that even the much cheaper ELISA-based assays would provide comparable baseline estimates of overall transmission intensity which will be an important consideration in resource-constrained settings
    corecore